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Recent work on communicating with chaos provides a practical motivation for being able to determine
numerically the topological entropy for chaotic invariant sets. In this paper we discuss numerical methods for
evaluating topological entropy. To assess the accuracy and convergence of the methods, we test them in
situations where the topological entropy is known independently. We also discuss the entropy of invariant
chaotic saddles formed by those points in a given attractor that never visit some forbidden “gap” region. Such
gaps have been proposed as a means of providing noise immunity in schemes for communication with chaos,
and we discuss the dependence of the topological entropy on the size of tH& 1@@3-651X98)00806-X]

PACS numbds): 05.45+b

[. INTRODUCTION orbit visits on iteratej for j=0,1,2.... Wecall such a
sequence oM consecutive symbols a word of length. If

One way of quantitatively characterizing chaotic motionwe look at all initial conditions of the dynamical system, and
is via Lyapunov exponents. Lyapunov exponents provide d@ecord the possible sequences of regions they pass through
way of quantifying the exponential divergence of the orbitson their firstM iterates, then we know all the words of length
of two nearby initial conditions. The definition of Lyapunov M that are allowed by the dynamical system. In general, this
exponents leads rather straightforwardly to efficient numerinumber will be smaller than". A sequence oM symbols
cal a|gorithms for their Computatid:rllz:l_ iliZ! . !il\/l that is not realized by any of the pOintS of the

A second way of quantifying the complexity of a dynami- State space we call “grammaticglly forbidden.” The nl_meer
cal system is the entropy, of which two kinds are most com©f allowed words of lengttM typically grows exponentially

monly discussed. One kind, the metric entropy, weights pos‘!"ith M,
sible motions according to their _probablhty of pemg W(M)~exp MH{W,}), 1)
observed, and therefore tells something about the typical be-
havior of the system. The topological entrof§], on the where we denote the “entropy” associated with the partition
other hand, measures complexity by looking at all possibldW;} by H{W;}, and the number of allowed words of length
motions without regard to their likelihood. Topological en- M by W(M). The topological entropi o is the supremum
tropy is therefore more difficult to compute, and less attenof H{W;} over all possible partitions,
tion has been paid to methods for accurately computing it. Ho —s HIW. 2

In the context of control of chaos for communicatiet], top= SURw; H{Wi} @
which we briefly describe below, any of the possible motions  Therefore, if we are given the firdl —1 symbols of a

can be selected by manipulating the system with small pefyord of lengthM, the topological entropy tells us on average
turbations. Therefore the relative likelihood of these motionshow many different possibilities there are for completing the
in the uncontrolled system is unimportant and the topologicalvord with the last symbol when we use an optimal partition
entropy is the measure of complexity that is most relevant ifassuming one existsThus we can think of the entropy as
this case. the average amount of information carried by each symbol.
Topological entropy can be thought of as folloges ex- By using small perturbations, it has been shown that one
act definition will be given latgr One can associate a sym- can cause the symbolic dynamics of a chaotic system to track
bolic dynamics with a chaotic dynamical system by parti-a prescribed symbol sequence, thus allowing one to encode
tioning the state space intoregionsW;, where the index  any desired message in the signal from a chaotic oscillator
runs from 1 tor. Given an initial conditiorx in state space, [4]. This can be done with arbitrarily small perturbations
one constructs a symbolic sequence associated with the orlgitovided the prescribed symbol sequence is consistent with
of x by recording the consecutive indicg®f the regions the  the symbolic dynamics of the unperturbed dynamical system
(i.e., the signal to be encoded by the orbit of the chaotic
system does not contain any sequences that are grammati-
*Also at Department of Electrical Engineering and Institute for cally forbidden by the systemConsidering the topological
Systems Research, University of Maryland, College Park, MDentropy to be the average amount of information that can be
20742. stored in one symbol, it is thus a measure of the information
TFAX: (301) 314-9363. Electronic address: bhunt@ipst.umd.edu transmission rate that can be achieved with the scheme of
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Ref. [4] for “communicating with chaos.” Alternatively, smaller set is a transiently chaotic g§emall perturbations
given a dynamical system and a rule to construct symbolidrom it yield orbits that wander over the full chaotic attrac-
dynamics(i.e., a partition used to form “letters” as the orbit tor).

visits the various partition element&nowledge of the exact ~ In Sec. Il we deduce a relation giving the topological
topological entropy would allow us to conclude if the parti- entropy in terms of the average stretching factor and the
tion is well chosen, in the sense of allowing the optimalMean decay time. The numerical algorithms are presented in
transmission rate. That is, we can compélig, to the expo- Sec. lll. In Sec. IV we make explicit the conditions under
nential growth of the number of allowed words with a given which _the numgrlcal algorithms yield the correct results. We
word length. If the latter is significantly smaller thah,, numerically verify the performance of the different methods

h h h | hi hoosi ifon one- and two-dimensional systems in Sec. V. Fin_ally, in
;e?:n?f)g?t:tito:uoug put could be achieved by choosing a di Sec. VI, we discuss the dependence of the topological en-

However, unlike for Lyapunov exponents, the numericaltropy on a “noise gap” parameter introduced to model situ-

: ! : : -ations of interest for communication with chaos.

computation of the topological entropy according to its defi-
nition is difficult, because it involves computing a supremum
over all possible partitions. For certain systems, this supre-
mum is realized by a finite partition called the generating
partition. Such partitions have been constructed for several Under certain circumstances it can be shown that the su-
systemg5], but are in general difficult to obtain. premum in Eq.(2) is achieved by a partition into a finite

Newhous€[6] has related the topological entropy to the number of component§W,}, called a generating partition.
maximal growth rate of any volume element with dimensionFor such a generating partition, one can obtain a transition
varying from one to the dimension of the state space. Hénatrix[a;;], wherea;;=1 if points in W; map intow; and
uses this relation for two-dimensional maps to obtain azero otherwise. The topological entropy then equals the loga-
bound on the entropy by computing the exponential growtHithm of the largest eigenvalue of this matfia;; ].
rate of the length of a line segment. Let M be a continuous map. It can be shown that the

For certain system@xiom A systems, see Ref7] for a  topological entropies dfl andM~* are the same. Alsd{
definitior), the topological entropy is also given by the ex- iS the same for the majd and for any map derived fror
ponential growth rate of the number of periodic points as & & continuous, invertible change of state space varidbles
function of the period. map topologlcal_ly conjug_ate thl). _

For chaotic scattering in two-dimensional Hamiltonian , W& now obtain arelation between the topological entropy
flows, Kovas and T&[8—10] associate a topological entropy of a chaotic saddle, the stretching properties of the map, and

with an invariant chaotic saddle. They consider a Compacmgvga;v?/fn:‘rgrmnethgiééglee tl‘rl'nhee I:ngﬁizlsatrt]é?\?vael iFr)l?rlcr)];[ijge
region, the scattering region, that contains the invariant cha- y '

ofic saddle, and from which almost every initial condition will be based on this relation. We consider a nonattracting

) . chaotic ergodic invariant set of a two-dimensional invertible
eventually leaves. They then look at a line segment that in

h bl ifold of the i . haofi 4dl smooth map. We enclose the invariant set in a redtbe
tersects the stable manifold of the invariant chaotic saddleyegiraining region”) from which almost every initial con-

and count the number of connected_ mterv_als on this lingyition eventually leaves, and make the simplifying assump-
segment that do not leave the scattering regiomfaierates.  tjon that the invariant set is hyperbolic, so that we can con-
The exponential growth of this number withis then used to  ¢ceptualize the region as a rectangle whose edges are parallel
estimate the topological entropy. Chenal. [11] introduce  to the directions of stretching and compression. By suitable
an efficient algorithm that is similar to this one, but uses thenormalization, we can take the rectangle to be a square
inverse of the map rather than the forward mapping. Thisvhose edges are of unit length.
relies on the fact that the topological entropy for the forward We now identify the initial conditions in the square that
and backward mappings is the same. Furthermore, it has ttstay inside the square for at leasiterates. As in Koves and
advantage that it can be used for area contracting mappings® [8—10, we note that these initial conditions will be given
such as the dissipative 'Hen map as well, since under the by B(n) bands that lie along the stable manifold segments,
inverse mapping almost every initial condition moves awaywhere
from the attractor.

In this paper we introduce and assess the accuracy and

convergence of different algorithms for calculating topologi- There will be a transient time associated with the chaotic

cal ef‘”"py. for transient cha.otic se(tsh.aotic saddlgsof invariant set as follows. Suppose we sprinkle a very large
two-dimensional maps. Transient chaotic sets are the sets ol mberN(0) of initial conditions uniformly in the square.

the most interest from the point of view of communicating Let N(n) denote the number of those points that have not left

with chaos, since, even when the orbit is on an attractor, Wene square by iterate. This number will decay exponentially
are generally interested in orbits that always avoid certaifyith time scaler:

regions of the attractofAs discussed in Sec. IV, this results

from considerations having to do with making the signal N(n)~N(0)exp(—n/7). (4)
more immune to noise contaminatiphus the orbit of the

information bearing signal is contained in a smaller chaotic We define the stable manifold natural measure of aset
set embedded within the full chaotic attractor, and thisin the square as follows. Denote bBig(A,n) the number of

II. RELATION WITH STRETCHING
AND TRANSIENT TIME

B(n)~exp(Hpn). 3)
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the N(n) initial conditions whose trajectories remain in the A

square fom iterates that lie inPA. Then X |
n+

 NgAD) / / i
ms(A)=lim lim . (5 ' :

nmee N©O)—e N(N) 1

slope =3

We then label the bands that remain foriterates byi
=1,... B(n). The natural measure within one of tB¢n)
bands is proportional to its widttbecause the initial points
were uniformly sprinkled in the squarePoints in the same
band closely follow each other far iterates[2]. Thus for
n>1, the (1h)th power of the magnitude of the largest ei-

genvalue (the ‘“stretching factor’) of DM"(x) [where LI
DM"(x) is the tangent mdgs approximately the same for all
initial points x in a bandi. We denote the stretching factor
for theith band of theB(n) bands obtained after iterates o each iterate, a fractian+ b falls outside the interval
by A(". We also note that the width of this band is roughly [0.1] so that

1M . This is because, as the band is iterated, it is stretched

in the direction parallel to its widtkby the facto\ ("), until exp—n/7)=[1-(a+b)]"=(a+B)", (10
it just fits (in the stretching directionin the 1X 1 square.

Hence the natural measure of a band is inversely propor(-)r

=

1 X,

FIG. 1. Piecewise linear one-dimensional model.

tional tox(" . 1 1
Therefore computing the natural measure-weighted —=In : (11)
. . S . - T atpB
stretching factor of the points remaining foriterates yields
-8 4 =B(n) 4 7| Therefore Eq(7) yields
(\)=lim lim ( > )\(n))\i(n) / { D NG )
— —o0 i=1 H =1 i = — =
n—e N(0) i i Hiop=1In s In at In 2. (12
i i B(n) |\ 5 o .
_nljl N(é?loo NN (6)  (This is the correct value because the number of intervals

remaining in the square afteriterates is 2.)

Notice that we first average theiterate stretching factors

and then take thath root in order to get a per-iterate quan- lll. NUMERICAL METHODS FOR ESTIMATING  Hiop

tity. Taking the logarithm on both sides, and using E@. The methods that we introduce are based on Efjsand
and(4), we get (8). First of all, suppose that we sprinkle a very large number
N(0) of points in a region that encloses a nonattracting cha-

Hiop=IN((\))— 1 @) otic invariant set. We keep track of tid(n) points that do

op T not leave that region after iterates, and computg\) using

Eq. (8). Taking the logarithm on both sides of E8), we get
In a numerical experiment, we can compute this average by

sprinkling a very large numbeX(0) of points in the square, 1 1 1
keeping track of the oneis=1, ... N(n) that remain fom IN((A))= ~In[Z(n)]+In N(n) |- (13
iterates (0>1) and computing the stretching factef” of _ _
these points im iterates. Then, Using Egs.(4) and(7), we obtain
N(n) 1 h 1
S S (n) I (M) ]~n/ IN((\)) = —|~NHiep, (14)
o=l | 8
()= N(n) L N(n) ' ® which says that, if we plot the quantity[l(n)] versusn, the

topological entropy will be given by the asymptotic slope of
whereE(n)=Z}“=(”1)>\J(")- this graph. We refer to this as method 1. We note that this
To illustrate the application of Ed7), consider the one- method, when applied to an attrac{an which caser=o),
dimensional model of Fig. 1, where we consider the invarianbecomes similar to the method introduced by Newhd6se
set of points that never leave the interJdl, 1]. For this  For the situations we consider in this pagesmooth, two-
system, one can show that the natural measure of the invariimensional maps that do not expand ayedsewhouse
ant setin0,a] is a/(a+ B), whereas the natural measure in proves that the topological entropy is given by the exponen-

[a+a,a+a+ B8] is B/(a+ B). Therefore tial growth rate of the arc length of the forward iteration of a
line segmenty. Newhouse uses this rigorous result as a basis
\y=a! a Lpt B _ 2 ©) for numerical computations of topological entropy. To nu-
at+pB a+B atp’ merically estimate the growth of the length pfunder suc-
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cessive iterations, Newhouse and Pignaf@pconsiderN  these ingredients, one can estimate the topological entropy
evenly spaced points op and approximate the length of the using Egs(7), (18), and(19). We refer to this as method 2.
nth iterate ofy by averaging the stretching of a differential Its numerical implementation will be discussed further.
line segment at thedé points ovem iterates. For the case of Finally, we will compare the results for the topological
an attractor, Newhouse’s method is therefore slightly differ-entropy obtained by these methods with the method of Ko-
ent from our method 1 in that he averages stretching rates ofacs and T&[8-10], which we refer to as method 3. This
a number of initial points on a line segment, whereas wenethod consists of estimating the exponential growth, as a
average over points all across the region that contains thiinction ofn, of the number of connected intervals on a line
invariant se{12]. The similarity of our method 1 applied to across the restraining region such that points in these inter-
attractors =) with Newhouse’s method and the fact that vals do not leave the restraining region foiterates[Chen
his rigorous results apply generallye., do not assume hy- et al. [11] apply this method to chaotic attractors by noting
perbolicity) lead us to believe that method 1 will work for that the entropy for the forward and inverse mapping is the
nonhyperbolic systems, despite the fact that our reasoning isame. Thus they apply the same method for a chaotic attrac-
its derivation assumed hyperbolicity. tor (under the inverse mappipdpy enclosing it in a region

Another way to exploit Eq(7) is to consider the distribu- from which almost every initial condition eventually leaves
tion of finite time Lyapunov exponents. Given an initial con- under the inverse mab.
dition x that stays in the restraining region foriterates, we
define the finite time Lyapunov exponent as IV. ESTIMATION OF THE REQUIRED SAMPLING SIZE

FOR THE DIFFERENT METHODS

1
h(x,n)= ﬁln[)\(“)(x)], (15 The numerical methods that we described in the preceding
section relied on sprinkling a large number of points in the

whereA(M(x) denotes the stretching factor for thetimes  region that contains the chaotic sadtteethods 1 and)2 or
iterated orbit starting at. We then compute this quantity for & large number of points on a line segment that stretches
all uniformly sprinkled initial conditions that stay in the re- across this regiorimethod 3. We now wish to obtain an
straining region, and obtain the distributi®{h,n) of finite  estimate of how large this number of sampling points needs
time Lyapunov exponents. For |arg‘e the distribution is tO be, in order for these methods to yield reliable results.

asymptotically of the fornj13] Equivalently, given a number of points sprinkled, we want to
find the number of iterates over which the scalings pre-
P(h,n)~(27n) Y%exd —nG(h)], (16)  dicted by Eqgs(14) and(3) hold.

where the minimum value of the functio® is zero and
occurs ath=h, whereh is the asymptotic Lyapunov expo-

nent. Note that a® is increased, the distributioR(h,n) . . . .

— exponents, Eq16). According to this equation, when sprin-
becomes mqre and more peaked alfowh and approaches kling a large number of points and computing stretching fac-
a delta functions(h—h), asn—o. tors for those points that stay in the region foiterates, the

In terms of this distribution, we can express the averaggogarithm of the per-iterate stretching will be distributed

stretching factor as aroundh. Moreover, the distribution will be peaked more
1n and more around this value asncreases. For the computa-
f P(h,n)exp(nh)dh tion of (\), however, values df nearh, (the value ot for
which the slope of theG function is ong will form the
dominant contribution, as explained below E#7). There-
f exd n(h—G(h)]dh]*". (17)  fore we want to be sure that in the numerical method we
have a significant number of points that will yieidvalues
For largen, the dominant contribution to this integral will nearh;. The number oh values that are close to, will be

come fromh values near the poirt;, where proportional toP(hy,n), so if we denote byN(n) the num-
ber of the initially sprinkled points that stay in the region for

A. Methods 1 and 2
Consider again the distribution of finite time Lyapunov

(N)=

dG(h) n iterates, we want
hy N(n)exd —nG(h;)]>1, (20
Therefore or, usingN(0)~N(n)expf/7) and Eqs(7) and(19),
In((A))= [y ~nG(hy)]=h;~G(hy). (19 N(@)>extin(hs = Hup)] D
B. Method 3

Another way to compute the topological entropy is therefore
to find the G function and determine the point where its  For the method based on E@) [7], we have to find all
slope is one. Independently, one can determine the decdfe intervals on a line segment that stay foiterates. When
time 7 from a fit of the slope of a plot of the logarithm of the we haveN(0) points on such a line segment, we can com-
remaining number of points versus number of iterates. Witlpare the spacing between the poifits 1/N(0)] with the
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typical size of one of thé(n) intervals. Consider the me- 60 ‘ R
dian interval size, which is the interval size such that 50% of e
all intervals are smaller than this value. Then, as we increase In[2(n)| «5/
the number of iterates, the median interval size eventually a0t e |
becomes smaller thanN(0). Past this point, less than half
of the connected intervals that stay foriterates will be (a)
found, and the found fraction decreases exponentially with
further increase. The numerical implementation of method 3 20 ‘
based on Eq(3) then fails past this point. 0 30 60
To estimate the median interval size, considerRlk,n).
This is the probability density of finding a particular stretch- n
ing factor explin). This probability is proportional to the 60 ' P
number of intervals with this stretching fact@nd therefore /;Wf
of length ~exp(—nh)] and the length of these intervals. In|2(n)] e
Therefore the fraction of all intervals with length expth), 40| yﬂ _
which we denote byP(h,n), is proportional to / (b)
P(h,n)~P(h,n)exp(nh)~exp{—n[G(h)—h]}. (22 00 .
. o . _ 0 30 60
The maximum of this distribution will occur &= h, (where
dG/dh|h1=1). For largen, we can expand the exponent n
in Eq. (22) about h=h; to obtain a GaussianP 55 ‘ -
~exg —nG'(h,)(h—hy)?] for h nearh;. Thus, forn large,h, 7
is approximately the mediamand therefore the approximate ln[E(n )] /&Wf‘”
median interval size becomes exp(hy). The criterion for 2= | o |
the required number of points for method 3 then becomes f”&m
exp(—nhy)>1/N(0), or / (c)
N(0)>exp(nhy). (23 15 ‘
Comparing Eq(23) with Eqg. (21) shows that the number of 0 30 60
points required for method 3 is always larger than for n
method 1. This is another advantage of method 1. 55 ;
C. One-dimensional e
. One-dimensional map example n[z(n)] /fmf
Consider again the one-dimensional map model of Fig. 1. 25| o i
The number of intervals that stay for iterates is 2 and &
there are (!)/[m!(n—m)!] of lengtha™B"~ ™. The number % (d)
(n)/[m!I(n—m)!] is the binomial coefficient. For fixed &
largen the binomial coefficient is strongly peaked and sym- 15 :
metric about (n/n)=1/2, and the width of the peak im/n 0 30 60
decreases to zero with increasingas n~ 2. The median n

interval size is given by"?B8"?= (aB8)"?, and therefore we
have thath; =In(aB) 2.

According to Eq.(21), we see that, for method 1, the FIG. 2. Limitations to the predicted scaling for method 1. The

: ; ; method is applied with the number of points sprinkled equdkjo
scaling breaks down for a lower number of iteratesf 6x10°, (b) 6x10°, () 6x 107, and (d) 6x 105, The respective

differs substantially from the topological entropi,. , ; : .
Therefore to most easily test the scaling for the model syscPPS" boundaries for the scaling regime according to(24). are

tem of Fig. 1 we chooser and 8 so as to maké; —Hyq, approximately 40, 35, 31, and 27.

substantial. We apply method 1 far=0.1 andB=0.8 with

the initial number of points sprinkled equal tox@(®,  With the numbers used this gives as the upper limit for the
6x 10°, 6x 107, and 6x 10°. With these values fow and@  scaling ranges of Figs.(@-2(d), respectively, 40, 35, 31,
h;=In(aB) Y?=1.26 as compared tdd,,,=IN(2)=0.693. and 27. These numbers can be seen to agree with the range in
The resulting scalings are shown in Figga)22(d). The  which the predicted scaling holds.

dashed line in each figure represents a line with slope In2 For method 3, we also check whether breakdown of the
(the topological entropy Solving forn in Eq. (21) to obtain  scaling occurs where predicted by E&3). With «=0.4 and

an upper bound for the scaling range, we obtain B=0.1, the criterion is N(0)>(0.2)"". There-
N(O fore with N(0)=65%x10° we expect bad scaling from
n< _NO) (24) ~ ~12 onwards. This number agrees with the onset of curva-

hi—Higp' ture in Fig. 3.
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<><> 000
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n
n
. . FIG. 5. If2(n)] versusn for the piecewise linear model of
FIG. 3. Scaling of the number of connected intervisls that Fig. 1 (0] P

stay for at leash iterates as counted with a linear grid. The slope is

fitted fromn=6 ton=12. N(0)> expl n/T)qun(Htop+ 1/T—H)]

D. More easily computable approximate criteria

=exgn(Hyp—h+2/7)]. (28
Since the numerical determination bf in principle in-
volves computation of3(h) which is not straightforward, The criterion for method 3 becomes
we wish to express the criteri2l) and (23) in terms of
quantities that are easier to compute. Therefore we assume N(0)>ean(2Htop_h+2h)]- (29

the G function to be approximately quadratic about its mini- The quantities appearing in Eq@8) and(29) are readily

mum valueh=h, and we will need this approximation to ayajlable from the computations. The topological entropy is,
hold in h<h<h1, of course, already computeh is approximated by

h—h)?
G(h)= ((2 2; , L E Inx{"
g
<m>_ﬁ—|\|(n) , (30)
_ iRy 1/2
o=[2G" (] 25 and 1f is available from the slope of M(n) versusn. The
) , quadratic approximation does not hold well for the map of
so thatP(h,n) is Gaussian, Fig. 1 when|a— B| is substantial, as in our example in Sec.
. IV C. We find, however, that it does hold well for our other
1 (h—h)? examples in this papdthe lkeda and Heon maps
P(h,n)~ (zw)/noex BRI b (26) In the rest of this paper, we have checked that all of our
estimations of the entropy are consistent with the limits on
With this notation, Eq(18) yields their scaling range.
— V. NUMERICAL EXPERIMENTS
h,=h+c". (27

A. One-dimensional model system
Consider the schematic illustration of tlefunction in Fig.
4. The quadratic approximation yields —G(hy)=h+(h;
—F)/2=F+ a?/2. Also, from Eqs(7) and(19) we have that

h;—G(h;) =Hpt+ (1/7). Therefore the criterion for method
1 becomes

To experimentally test the validity of these methods, we
first wish to apply them to a system where we know the
topological entropy exactly, namely, the model system of
Fig. 1. The topological entropy for this system is In2.

Since we wish to compare the correctness and efficiency
of the different methods, we do the following. For method 1,
we randomly sprinkle 68 10° points in the interval0,1]
and compute the stretching factor of each of these points
until they leave. In this way, we obtaik(n) for n up to
approximately 30. One can see in Fig. 5 that the predicted
exponential scaling, Eq14), holds very well over this num-

G(h)

N

=@

H

top

+ 1/t

FIG. 4. Relation betwee® function, h, h;, anda? when theG

function is given by its lowest order approximation, Eg5).

ber of iterates. The slope is estimated with a least squares fit.
We then repeat this procedure 50 timé&ke randomly
sprinkled points are different each tijrend find the average
and root mean square deviation. The results are summarized
in Table I.

For method 2, we again use about>650° points and
repeat the procedure 50 times. Results for the same quanti-
ties as for method 1 are listed in Table I. As can be seen in
Fig. 6, the distribution of Lyapunov exponer®¢h,n) does
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TABLE I. Comparison of the estimated topological entropies 50 times with the grid being shifted between different real-
for the one-dimensional model system of Fig. 1 obtained using thézations by a random fraction of the grid size. The average
three different methods. For each case, the average and root megfad rms deviation for method 3 are also shown in Table 1.
square deviation of 50 independent attempts is listed. Note that the From this table, we can conclude that both method 1 and
correct value of the topological entropy is In2).693 147. method 3 give very accurate results for the estimation of the
topological entropies with small deviations from the exact

Average rms value for each estimation. Method 2 is in this respect signifi-
Method 1 0.69315 0.00015 cantly less accurate, and the fluctuations between different
Method 2 0.68463 0.01500 estimations are substantial. We remark that the root mean
Method 3 0.69313 0.00003 square deviation for method 3 is artificially small for this

model (compared to the two-dimensional models that we
will discuss furthey. As a matter of fact, the 50 different
estimations only gave rise to two possible outcomes, one of
iyvhich is correct(up to six digits, with the other one being
slightly below the correct value. In fact, method 3 necessar-

equal to one, we fit a cubic polynomial through the histo-11Y givgs a lower bo_und for the topological entropy. Estima-
gram data with a least squares fitting method, in a rang_gon with method 3 is, however, very dependent on the scal-

where the estimates of th@ function for differentn agree N9 range(fitting the slope withn<15 would change the
well with one another. results greatly and this suggests that method 1 may be more

Finally, for method 3, we wish to obtain an estimation of €liable in general.
the entropy for a similar computational effort as for the other
methods. Therefore we lay down 830 evenly spaced

points along the interval0,1], and obtain the lifetime of  To perform a numerical test on a two-dimensional system,
each point(i.e., the time it takes to leave the inter\[ﬂ,l]). we consider the lkeda me[p_4] for the Comp|ex numbezn

For eachn, we then go through this list and count the num- =x_+iy wherex, andy,, are real,

ber of intervals of consecutive points all having lifetimes
larger thann. In this way, our estimation for the number of
connected intervals with lifetime at leastis a lower bound,
and we expect to miss a lot of intervals with lifetimevhen

a typical such interval is of the order of magnitude of the
grid size or less. This can be seen in Fig. 3, where we sewith parameter valuesa=1.0027, b=0.9, x=0.4, and
that the scaling starts to be very bad from aroundl14  %=6.0[15]. These parameter values give rise to a chaotic
onwards. Therefore for this method we do a fitting of theattractor. However, we can find an invariant subset of this
slopes forn=12, and for consistency choose the same scalattractor that never leaves the rectandlé]

ing range for method 1. Here also, the procedure is repeated

indeed become narrower asis increased, whereas tt@
function remains approximately unaltered, as predicted.
order to find the point where the slope of tefunction is

B. Ikeda map

(31)

i
Z.1=a+bzexp ik———|,
AT p( 1+|zn|2)

0.1<x<1.1, —1.0<y<0.8.

10

P(\)

1.5

0.6

G(N) "

0.3r

0.0

n=25
n=12

1.5

This invariant set is shown in Fig. 7. We can again associate
a lifetime with each point in this rectangle by counting how
many iterates it takes to leave the rectangle. In this way we
can associate a transient timewith this set. We then per-
form the same procedure as for the one-dimensional system:
estimating the topological entropy 50 times independently
and computing the average and rms deviation. The results
are summarized in Table IIl. For each estimation 480°
points were used. The 50 line segments for method 3 were
obtained by connecting two randomly chosen points on the
right and left boundary of the rectangle. From Table Il, we
see that the results of methods 1 and 3 are consistent with
each other, with method 2 slightly deviating. The fact that
method 1 has the smallest fluctuations, and that its predicted
scaling holds over a very wide range leads us to believe that
method 1 is the most reliable. Note also that the numerical
value that it yields is consistently slightly above the value of
method 3, which gives a lower bound. Further evidence for
this conclusion comes from a separate estimation with the
transition matrix method, described at the beginning of Sec.

Il. Labeling the five regions as shown in Fig. 7 by the num-
bers 1 to 5, and examining orbits that stay in these regions
we obtain the following X5 transition matrix:

FIG. 6. (a) Distribution of the finite time Lyapunov exponents
for the one-dimensional model system for 12 andn= 25 and(b)
G functions obtained from these distributions.
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TABLE Ill. Comparison of the estimated topological entropies
for the attractor of the Heon map. Again, the listed values are the
average and root mean square deviation for 50 independent estima-
tions. The previously estimat¢8] value for the topological entropy
is 0.4650+ 0.0002.

Average rms

Method 1 0.46493 0.00003
Method 2 0.46621 0.00300
Method 3 0.44924 0.03000

with the “classical” valuesa=1.4p=0.3. We assume that
Eq. (7) still holds with 7=c0, and that therefore the methods
we have discussed still yield a reliable estimation of the to-
pological entropy. For method 3 we must use the inverse
mapping, since we are working with an attractor. For meth-
ods 1 and 2 we use the forward mapping. We compare our
results with the estimation obtained from the very intensive
B computation of Grassberger, Kantz, and Moeftg who
Sk constructed a partition meant to give the topological entropy.
: They conclude the topological entropy to be 0.4650
+0.0002. We use 8 10° points for each estimation in each
x of the three methods. The random lines for method 3 are
_FIG. 7. (a) Ikeda attractor an¢b) 'invariant set that is formed by %25;2?}),2/_?2”:53; E {%ﬁ?hrg Egoslgftss g?e tgfn:lrzifigd in
points that never get mapped outside of the rectangle under forwatr: .
or inverse mapping. ab]e lll. Again, we see t_hat method 1 has very small fluc-
tuations and that the scaling holds over a wide range. More-
over, the quantitative result is consistent with the most pre-

-1
0.0 0.6 1.2

0110 0 cise previous value of Grassberger, Kantz, and Moenig.
0 0 0 0 1 Method 2 yields values that are consistent with this estima-
A=|1 0 0 0 o (32 tion as \_NeII, b_ut the ﬂuctuat.ions are significantly Iarggr. The
uncertainty with method 3 is particularly large for this test

10000 case. We attribute this to the typical lifetime under the in-
00 0 1 1 verse mapping being very short. Thus we conclude that for

this attractor case method 1 again seems to be most reliable.

The logarithm of the largest magnitude eigenvalueAois
0.413 807 6, which is consistent with the results of method 1 v|. VARIATION OF THE TOPOLOGICAL ENTROPY

and method 3(Note, however, that there is no guarantee that AS A EUNCTION OF “NOISE GAP” WIDTH

the partition shown in Fig. 7 is a generating partition. Thus ) ) _ o N
the logarithm of this eigenvalue is not necessaiy,, In this section we discuss examples indicating the utility
though it should, at least, be a good estimate for it. of topological entropy computations in a practical applica-

tion. In particular, when trying to encode a message in the
signal from a chaotic oscillator for the purpose of forming a
communication signal4], one must avoid confusion about
Finally, we illustrate how the three methods work for at- which partition element the orbit is in. For illustration, con-

C. Hénon map

tractors. We consider the attractor of thénda map, sider the chaotic attractor for the standarchbie map as an
) encoding system. One can make a partition by dividing the
(x,y)—(a=x*+by,x), (33 attractor into two parts using=0 as the dividing line. How-

ever, noise added to the signal upon transmission may make
TABLE Il. Comparison of the estimated topological entropies j impossible to attach the correct symbol to points in the
for the invariant set contained in the Ikeda attra¢kig. 7). Again, boundary regiory=0. One way to counter this is to use the
the listed values are the average and root mean square deviation fof, | control (already employed to control the symbol se-
50 independent estimations. The eigenvalue of the transition matriﬁuence that forms the signado that orbits never fall in the
for the partition in Fig. 7 is 0.413 807 6. “noise gap” region —e<y<e (where € is chosen larger
than the noise levgl This technique was used in the proof-

Average rms o . N
of-principle laboratory demonstration of communication
Method 1 0.41405 0.00030 with chaos in Ref[17]. Because the control is small, we
Method 2 0.40443 0.00200 cannot expect it to create new orbits, topologically distinct
Method 3 0.41381 0.00150 from those already existing on the attractor. Therefore, with

imposition of our noise gap, we are concerned with points on
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0.750
Htop
0.375¢} T
= O x 2 0.000 .
2 S ‘ 0.000 0.125 0.250
Y égg\‘\ ‘
Or /‘, : FIG. 9. Topological entropy versus noise gap for
AT X—2x mod 1.
(b) " ,//
-2 - . The mapM (x)=2x mod 1 then has the property that
-2 0 » 2

) . . oM(X)]=050304 ..., (35
FIG. 8. (a) Henon attractor fom= 1.4 andb= 0.3 with noise gap
and (b) resulting_chaotic sa_ddle made up of points on the attractoq_e_, applying the map to the binary representation of any
that never map into the noise gap. point is equivalent to removing the first digit and shifting the

h iinal lled h bi ._.remaining digits one place to the left. Now consider the set
the original uncontrolled attractor whose orbits never Visity .« \ve obtain by setting the gap from 1/2 to +/2/8. Note

the noise gap. This scenario is depicted in Fig. 8. In Fg) 8 that o(1/2)=1 and o(1/2+ 1/8)=101 (by convention we

we show the attractor for the iHen map, Eq.(33), _W'th omit the infinite string of zeros that follow these numbers
parametersa=1.4 andb=0.3, and the noise gap, i.e., thé pomqying the interval 1/2,1/2+ 1/9 means that all points
region —e<y<e. The resulting invariant chaotic saddle of ,,qe hinary representation starts with 100 are not a part of
points that never maps into this noise gap is shown in Fi9the invariant set. Removing all the points that eventually

8(b). . :
map into[ 1/2,1/2+ 1/ means that all the points that have
Since points in the invariant set may be eliminated but not p intof 4 pol v

dded with i . h logical i . oiTiy10i+2=100 for somé are not part of the invariant set.
added with increasing, the topological entropy Is nonin- |, haricylar, we remove all the points whose binary repre-
creasing withe. Thus there is an inherent trade-off betwee”sentation starts with 10100; that is, the inten/2
information cap_acity Iﬂtop)_and noise _immunity. To assess +1/8,1/2+ 1/8+ 1/37. Therefore enlarging the noise gap
this tradeoff, "f"f"St. Ste(’]{"hr'fh we consider heyes to evalu- om0 1172, 1/2+ 1/8] to [1/2,1/2+ 1/8+ 1/37 will not alter
ateHyop as a function of the noise gap SiE8]. . the invariant set since no new points are excluded through
We first investigate the dependence of the topological eNiis enlargement of the gap: points that map ifitt2
tropy on this noise gap for a simple one-dimensional system, /g 1/5.1/g+ 1/37 will be mapped into[ 1/2,1/2+ 1/8]
X,_)ZX mod 1. For SymbOI'C e”COd'”Q assomqted with a Pawo iterates later, and therefore are excluded anyway. This
tition of [0,1] we write down a zero if an orbit lands to the ¢, 3ins the plateau in Fig. 9 starting at 0.125. One can see
left of 0.5 and a one otherwise. The noise gap is set from 0. at for similar reasons, moving the noise gap from+1128
to 0.5+ €. We can then compute the topological entropy ofy, he noint with binary representation 10110 . will re-
the Cantor set of points that never fall |0.5,0.5€] as gyt in the same set and will not affect the entropy. Therefore

follows. Since the stretching factor is 2 for every orbit, the e expect the length of the largest constant entropy interval
topological entropy H,,=In(2)—1/7] is determined if we 4 pe

can compute the decay tinre (Our method 1 reduces to this

computation when the stretching is constant on each itgrate.

We therefore sprinkle a very large number of points in the 1/32+1/128+ 1/512+ - - - :1/252 1/21=1/24, (36)
interval [0,1] and compute how long it takes for each of [

these points to fall in the gg®.5,0.5+ €]. From a fit of the

slope of the logarithm of the remaining points[Nift)], ver-  which is indeed the value that can be read from the graph.
sust, we can obtain %. As can be seen from Fig. 9, the The other constant entropy intervals can be explained in a
resulting graph of the topological entropy versus noise gajgimilar way. As a matter of fact, the graph represents a com-
exhibits many intervals of constant entropy. Such intervals oplete devil’s staircase, i.e., it is a continuous, monotonically
constant entropy for saddle sets were also found in[R4].  decreasing function that is constant almost everywhere. In
for the Hanon map as a function of the parameterfor  particular, the set of points that are not included in an inter-

a>1.6 and in[18] for noise gaps. val of constant entropy form a Cantor set of zero Lebesgue
This phenomenon can be understood as follows. Considéneasure.

the binary expansion of points in the intervid,1]. If x We now investigate how we can use the concept of fractal

=3,0(1/2)', whereo;=0 or 1, then we associate withthe ~ dimension to characterize the Cantor sekafalues that are

(infinite) symbol sequence, not included in a constant entropy interval. Call this et

We now consider the dimension of the intersectio\afith
o(X)=010,03... . (39 an interval[ 0.5+ €,0.5+ e+ §]. For fixed e consider the set
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FIG. 10. Measurement of the Hter exponent of the function

Hyop(€) at e=0.166 67. The solid line represents a line of slope FIG. 11. The topological entropy for—2x mod 1 for smalle.

Hi0p(0.166 67)/In(2)=0.6936 (the prediction for the Hider expo- The dashed line represents Int2), which approximates qe)
neny. for small e.

N—-1
of points whose orbits under thexZnod 1 map never land in _
: Hiop €—a) —Hiop( €+ a) = Hion(Xi) — Hiop(Xi 1) 1-
[0.5,0.5+ ¢[. Call this Cantor seB,. One can shoy2] that topl €~8) ~Hig( €+ ) EO [HiopXi) = Hiop(Xi+1)]

the dimension of this set is (39
In(2)—1/r H The terms on the right-hand side will be zero for all the
d(B,) = —_op (37)  constant entropy intervals, and if we assume thédetoex-

In(2)  In(2)’ ponent at points imA to be nearly constant acrogs—a, e

+a], then the intervals for which the entropy is not constant

whereH,,,=In(2)—1/7. [Information dimension of the natu- contribute approximately“ (a being the Héder exponent
ral measure and capacity dimension are equal for this sdt we denote byN(5) the number of nonconstant entropy
since the stretching rate, In(2), is constant over the set. Simwidth intervals, we then have that
larly, the metric and topological entropies are eguilow,
consider the noise gaf0.5,0.5+ e+ 8] where & increases N(3) 0" ~Hiop(eta) —Hy(e—a). (40
continuously from 0. The entropy can decrease only for val- ) o
ues of 5 such that 0.5 e+ 6 is one of the points in the Since the right-hand side is independent &f we have
Cantor seB, . Therefore we conjecture that the local dimen-N(8)~ &~ “ implying that the local dimension o is the
sion of the Cantor se& near a value of the noise gajwith ~ Holder exponent. . .
entropy Hy,i(€)] is the dimension of the Cantor sé, As can be seen from Fig. 9, the intervals becom_e smaller
namely,H,,/In(2). In particular, if we letd(H,,,) denote the ase app_ro_aches zero, and the graph a_pproaches a linear func-
local dimension ofA at the value ofe with Hio(€)=Hiqp, tion. This is because the Ilocal (_jlmensmn of the Canto_r set of
thend(H p):E(B ), or points that are not contained in a constant entropy interval

o & goes to 1 ag goes to zero. The scaling of the entropy versus

e for small € goes ag19]

Htop

h

d(Hiop) = : (38 Hop(€)=IN(2) — €. (41)
This follows from Eq.(7) and the fact that the natural mea-

whereh=In(2) is the Lyapunov exponent of the Cantor setsSure of thee=0 attractor that is contained [11/2,1/2+ €[ is
B.. €. Assuming that the attractor measure is only slightly al-

To test the relation, Eq38), numerically, we do the fol- tered by a smalk gap, we estimate that expg}~1— ¢, and
lowing. Take a noise gap widthsuch thate is on the Cantor  thus
setA and compute the Hder exponent of the entropy func-
tion (Hyp versuse) at that value. This involves computing lr=e. (42
the entropy fore+ & for small and varyings. The Hdder )
exponent is then given by the slope of the graph ofone can see from Fig. 11 that the tangent to the entropy
IN[Hiop(€— 8) —Hio €+ 8)] versus Ing). The resulting versuse graph ate=0 (the dashed linehas a slope of- 1 as
graph fore=0.125 is shown in Fig. 10 and an exponent of &xPected. _
0.7 is measured in this way. This is in good agreement with Similar structure of the graph of the topological entropy
a value ofH,,/In(2)=0.4814/0.693% 0.6946. The associa- versus the noise gap is obseryed for other one-dimensional
tion of the Hdder exponent with the local dimension Afis ~ Maps. As further examples, Fig. 12 shows such graphs for
made as follows. Consider the interjal-a,e+a] for some  the tent map,
small fixeda. Now divide this region intoN intervals of .
equal 8. Letx; (i=0, ... N) be the points on the interval 2x forxin[0,0.5]

boundaries; then X 2—2x forxin[0.5,1], (43)
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Ho
fop FIG. 14. Schematic illustration of the chaotic saddle that con-
0.3757 . sists of all points on the chaotic attractor that, under the forward or
backward mapping, will never map into the noise gap. The chaotic
b set shown as black dots is the intersection of its stable and unstable
(b) manifold.
0.000 ‘
0.00 0.25 0.50 be seen that the constant entropy plateaus are present, and we
€ believe this graph to be a complete devil's staircase as well.

FIG. 12. (a) Topological entropy versus noise gap for the tent
map, and(b) topological entropy versus noise gap for the logistic

map.

and for the logistic mapx— 4x(1—x). For smalle, the en-
tropy scales as In(2)e for the tent map, and In(2)(2/7) e
for the logistic map, for the same reason as explained abov

The numerics are not accurate enough to make a numerical
estimation of the local dimension of the set of points that are
not included in a constant entropy interval. We can, how-
ever, give a simple theoretical treatment of this question. To
do this, consider the schematic illustration at noise gaip

Fig. 14. The black dots at the intersections of the stable and
élnstable manifolds schematically represent the chaotic

Numerical estimations of the slope of the entropy versussaddle' Again, call this saddiB, and the Cantor set of

noise gap graph near=0 confirm these predictions values not included in a constant entropy interdal This

In two dimensions, we use method 1 to obtaig .as a time, when we increase, the chaotic saddle will get smaller
function of e for the H'énon map(with a= 1.4 andb=0p3) as €ach timee is such that the gap widens to include one of the
illustrated in Fig. 8. The resulting graph is shown in Fig. chaotic saddle points. Referring to Fig. 14, we see th_at this
13(a). Although the function looks rather smooth fewp to W'” occur when the corner point on the cha_ot|c saddleis
0.25, we recognize the same structure as for the Onépcluded in the gap. In addition, as the gap increases through
diménsional case. From the enlargement in FigbL3t can X4 , all the points of the saddle that lie on the stable manifold

' segment througlx, will also be removed from the chaotic

0.50 : saddle.(For a related consideration sgE9].) Therefore we
can effectively consider the process as successive removal of
top stable manifold line segments asncreases. Consequently,

if we let d(H,,) denote the local dimension éf at H,(€),
0.257 . thend(H,op) =ds(B.) — 1, wheredy(B,) is the dimension of
' the stable manifold of the chaotic saddde. The informa-
tion dimension of the stable manifold is given 2] 2

—1/(7h), whereh is the positive Lyapunov exponent of the
chaotic saddle. For the lHen attractor, numerical computa-
c tions of the capacity dimension and the information dimen-
0.390 : sion give values that are very nearly the saie capacity
dimension is slightly higher and the situation is similar with
respect to the metric entrofggiven byh—1/7) and the to-
pological entropy (with the topological entropy slightly
highep. In such situations, a rough estimate is provided by
approximately equating the capacity and information dimen-

H

©
A
I
@)
T
.

0.300

(v) .

0.280

0.335
€

0.390

sions, and the topological and the metric entropies. This
givesd(Hyp=1—(h7) "%, and thus

H
d(Hiop) = %’ (44)

FIG. 13. (a) Topological entropy versus noise gap for thende
map @=1.4, b=0.3). (b) An enlargement of the same function This coincides with our previous res(Eq. (38)] for the tent
shows the constant entropy plateaus more clearly. map and the 2 mod 1 map(with the important difference
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that for the tent and thexmod 1 maps we expect exact, We find that method 1 obeys its predicted scaling over a
rather than approximate, equality due to the uniform stretchwider range, and is not dependent on the lifetiméeing

ing by the constant factor 2 in those cases long or short.
We also used method 1 to study the dependence of the

topological entropy on the noise gap, i.e., the region that is
forbidden for the dynamics to enhance noise immunity in
We have discussed methods to numerically compute theommunicating with chaof4,17). The structure of the en-
topological entropy for chaotic saddles of two-dimensionaltropy versus noise gap function is established to be a com-
maps. The methods indirectly rely on computing a transienplete devil's staircase. Numerical tests provide evidence for
time and stretching properties of the map. These are quantour prediction of the dimension of the Cantor set of points
ties which are much easier to compute than the quantitieghat are not included in a constant entropy interval.
that occur explicitly in the definition of the topological en-
tropy. Numerical experiments for cases where the entropy is
known from independent sources indicate that the methods
provide the correct answer. One of the meth@ugthod 1} This work was supported by the Office of Naval Research
seems to be particularly efficient. For method 1, in the case&hysicg and by the U.S. Department of Energy. The nu-
we tested, the fluctuations between different estimations ammerical computations reported in this paper were supported
smaller than for both of the other two methods. In addition,in part by a grant from the W.M. Keck Foundation.

VII. CONCLUSION
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