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Calculating topological entropy for transient chaos with an application
to communicating with chaos

Joeri Jacobs and Edward Ott*
Institute for Plasma Research and Department of Physics, University of Maryland, College Park, Maryland 20742

Brian R. Hunt†
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Recent work on communicating with chaos provides a practical motivation for being able to determine
numerically the topological entropy for chaotic invariant sets. In this paper we discuss numerical methods for
evaluating topological entropy. To assess the accuracy and convergence of the methods, we test them in
situations where the topological entropy is known independently. We also discuss the entropy of invariant
chaotic saddles formed by those points in a given attractor that never visit some forbidden ‘‘gap’’ region. Such
gaps have been proposed as a means of providing noise immunity in schemes for communication with chaos,
and we discuss the dependence of the topological entropy on the size of the gap.@S1063-651X~98!00806-X#
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I. INTRODUCTION

One way of quantitatively characterizing chaotic moti
is via Lyapunov exponents. Lyapunov exponents provid
way of quantifying the exponential divergence of the orb
of two nearby initial conditions. The definition of Lyapuno
exponents leads rather straightforwardly to efficient num
cal algorithms for their computation@1,2#.

A second way of quantifying the complexity of a dynam
cal system is the entropy, of which two kinds are most co
monly discussed. One kind, the metric entropy, weights p
sible motions according to their probability of bein
observed, and therefore tells something about the typical
havior of the system. The topological entropy@3#, on the
other hand, measures complexity by looking at all poss
motions without regard to their likelihood. Topological e
tropy is therefore more difficult to compute, and less att
tion has been paid to methods for accurately computing

In the context of control of chaos for communication@4#,
which we briefly describe below, any of the possible motio
can be selected by manipulating the system with small p
turbations. Therefore the relative likelihood of these motio
in the uncontrolled system is unimportant and the topolog
entropy is the measure of complexity that is most relevan
this case.

Topological entropy can be thought of as follows~an ex-
act definition will be given later!. One can associate a sym
bolic dynamics with a chaotic dynamical system by pa
tioning the state space intor regionsWi , where the indexi
runs from 1 tor . Given an initial conditionx in state space
one constructs a symbolic sequence associated with the
of x by recording the consecutive indicesi j of the regions the

*Also at Department of Electrical Engineering and Institute
Systems Research, University of Maryland, College Park, M
20742.

†FAX: ~301! 314-9363. Electronic address: bhunt@ipst.umd.e
571063-651X/98/57~6!/6577~12!/$15.00
a
s

i-

-
s-

e-

le

-

s
r-
s
l

n

-

bit

orbit visits on iteratej for j 50,1,2, . . . . We call such a
sequence ofM consecutive symbols a word of lengthM . If
we look at all initial conditions of the dynamical system, a
record the possible sequences of regions they pass thr
on their firstM iterates, then we know all the words of leng
M that are allowed by the dynamical system. In general,
number will be smaller thanr M. A sequence ofM symbols
i 1i 2 , . . . ,i M that is not realized by any of the points of th
state space we call ‘‘grammatically forbidden.’’ The numb
of allowed words of lengthM typically grows exponentially
with M ,

W~M !;exp~MH$Wi%!, ~1!

where we denote the ‘‘entropy’’ associated with the partiti
$Wi% by H$Wi%, and the number of allowed words of leng
M by W(M ). The topological entropyH top is the supremum
of H$Wi% over all possible partitions,

H top5sup$Wi %
H$Wi%. ~2!

Therefore, if we are given the firstM21 symbols of a
word of lengthM , the topological entropy tells us on averag
how many different possibilities there are for completing t
word with the last symbol when we use an optimal partiti
~assuming one exists!. Thus we can think of the entropy a
the average amount of information carried by each symb

By using small perturbations, it has been shown that o
can cause the symbolic dynamics of a chaotic system to t
a prescribed symbol sequence, thus allowing one to enc
any desired message in the signal from a chaotic oscill
@4#. This can be done with arbitrarily small perturbatio
provided the prescribed symbol sequence is consistent
the symbolic dynamics of the unperturbed dynamical sys
~i.e., the signal to be encoded by the orbit of the chao
system does not contain any sequences that are gram
cally forbidden by the system!. Considering the topologica
entropy to be the average amount of information that can
stored in one symbol, it is thus a measure of the informat
transmission rate that can be achieved with the schem

r
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Ref. @4# for ‘‘communicating with chaos.’’ Alternatively,
given a dynamical system and a rule to construct symb
dynamics~i.e., a partition used to form ‘‘letters’’ as the orb
visits the various partition elements!, knowledge of the exac
topological entropy would allow us to conclude if the par
tion is well chosen, in the sense of allowing the optim
transmission rate. That is, we can compareH top to the expo-
nential growth of the number of allowed words with a giv
word length. If the latter is significantly smaller thanH top,
then better throughput could be achieved by choosing a
ferent partition.

However, unlike for Lyapunov exponents, the numeri
computation of the topological entropy according to its de
nition is difficult, because it involves computing a supremu
over all possible partitions. For certain systems, this sup
mum is realized by a finite partition called the generat
partition. Such partitions have been constructed for sev
systems@5#, but are in general difficult to obtain.

Newhouse@6# has related the topological entropy to th
maximal growth rate of any volume element with dimensi
varying from one to the dimension of the state space.
uses this relation for two-dimensional maps to obtain
bound on the entropy by computing the exponential grow
rate of the length of a line segment.

For certain systems~Axiom A systems, see Ref.@7# for a
definition!, the topological entropy is also given by the e
ponential growth rate of the number of periodic points a
function of the period.

For chaotic scattering in two-dimensional Hamiltoni
flows, Kovács and Te´l @8–10# associate a topological entrop
with an invariant chaotic saddle. They consider a comp
region, the scattering region, that contains the invariant c
otic saddle, and from which almost every initial conditio
eventually leaves. They then look at a line segment that
tersects the stable manifold of the invariant chaotic sad
and count the number of connected intervals on this
segment that do not leave the scattering region forn iterates.
The exponential growth of this number withn is then used to
estimate the topological entropy. Chenet al. @11# introduce
an efficient algorithm that is similar to this one, but uses
inverse of the map rather than the forward mapping. T
relies on the fact that the topological entropy for the forwa
and backward mappings is the same. Furthermore, it has
advantage that it can be used for area contracting mapp
such as the dissipative He´non map as well, since under th
inverse mapping almost every initial condition moves aw
from the attractor.

In this paper we introduce and assess the accuracy
convergence of different algorithms for calculating topolo
cal entropy for transient chaotic sets~chaotic saddles! of
two-dimensional maps. Transient chaotic sets are the se
the most interest from the point of view of communicati
with chaos, since, even when the orbit is on an attractor,
are generally interested in orbits that always avoid cer
regions of the attractor.~As discussed in Sec. IV, this resul
from considerations having to do with making the sign
more immune to noise contamination.! Thus the orbit of the
information bearing signal is contained in a smaller chao
set embedded within the full chaotic attractor, and t
ic

l

if-

l
-

e-

al

e
a
h

a

ct
a-

-
e,
e

e
is

he
gs

y

nd
-

of

e
in

l

c
s

smaller set is a transiently chaotic set~small perturbations
from it yield orbits that wander over the full chaotic attra
tor!.

In Sec. II we deduce a relation giving the topologic
entropy in terms of the average stretching factor and
mean decay time. The numerical algorithms are presente
Sec. III. In Sec. IV we make explicit the conditions und
which the numerical algorithms yield the correct results. W
numerically verify the performance of the different metho
on one- and two-dimensional systems in Sec. V. Finally,
Sec. VI, we discuss the dependence of the topological
tropy on a ‘‘noise gap’’ parameter introduced to model si
ations of interest for communication with chaos.

II. RELATION WITH STRETCHING
AND TRANSIENT TIME

Under certain circumstances it can be shown that the
premum in Eq.~2! is achieved by a partition into a finite
number of components$Wi%, called a generating partition
For such a generating partition, one can obtain a transi
matrix @ai j #, whereai j 51 if points in Wi map intoWj and
zero otherwise. The topological entropy then equals the lo
rithm of the largest eigenvalue of this matrix@ai j #.

Let M be a continuous map. It can be shown that t
topological entropies ofM andM21 are the same. Also,H top
is the same for the mapM and for any map derived fromM
by a continuous, invertible change of state space variable~a
map topologically conjugate toM).

We now obtain a relation between the topological entro
of a chaotic saddle, the stretching properties of the map,
the transient time, i.e., the time it takes a typical point
move away from the saddle. The methods that we introd
will be based on this relation. We consider a nonattract
chaotic ergodic invariant set of a two-dimensional invertib
smooth map. We enclose the invariant set in a region~the
‘‘restraining region’’! from which almost every initial con-
dition eventually leaves, and make the simplifying assum
tion that the invariant set is hyperbolic, so that we can c
ceptualize the region as a rectangle whose edges are pa
to the directions of stretching and compression. By suita
normalization, we can take the rectangle to be a squ
whose edges are of unit length.

We now identify the initial conditions in the square th
stay inside the square for at leastn iterates. As in Kova´cs and
Tél @8–10#, we note that these initial conditions will be give
by B(n) bands that lie along the stable manifold segmen
where

B~n!;exp~H topn!. ~3!

There will be a transient time associated with the chao
invariant set as follows. Suppose we sprinkle a very la
numberN(0) of initial conditions uniformly in the square
Let N(n) denote the number of those points that have not
the square by iteraten. This number will decay exponentially
with time scalet:

N~n!;N~0!exp~2n/t!. ~4!

We define the stable manifold natural measure of a seA
in the square as follows. Denote byNs(A,n) the number of
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the N(n) initial conditions whose trajectories remain in th
square forn iterates that lie inA. Then

ms~A!5 lim
n→`

lim
N~0!→`

Ns~A,n!

N~n!
. ~5!

We then label the bands that remain forn iterates by i
51, . . . ,B(n). The natural measure within one of theB(n)
bands is proportional to its width~because the initial points
were uniformly sprinkled in the square!. Points in the same
band closely follow each other forn iterates@2#. Thus for
n@1, the (1/n)th power of the magnitude of the largest e
genvalue ~the ‘‘stretching factor’’! of DMn(x) @where
DMn(x) is the tangent map# is approximately the same for a
initial points x in a bandi . We denote the stretching facto
for the i th band of theB(n) bands obtained aftern iterates
by l i

(n) . We also note that the width of this band is rough
1/l i

(n) . This is because, as the band is iterated, it is stretc
in the direction parallel to its width~by the factorl i

(n)), until
it just fits ~in the stretching direction! in the 131 square.
Hence the natural measure of a band is inversely pro
tional to l i

(n) .
Therefore computing the natural measure-weigh

stretching factor of the points remaining forn iterates yields

^l&5 lim
n→`

lim
N~0!→`

S F (
i 51

i 5B~n!
1

l i
~n!

l i
~n!G Y F (

i 51

i 5B~n!
1

l i
~n!G D 1/n

5 lim
n→`

lim
N~0!→`

S B~n!

N~n!/N~0! D
1/n

. ~6!

Notice that we first average then-iterate stretching factors
and then take thenth root in order to get a per-iterate qua
tity. Taking the logarithm on both sides, and using Eqs.~3!
and ~4!, we get

H top5 ln~^l&!2
1

t
. ~7!

In a numerical experiment, we can compute this average
sprinkling a very large numberN(0) of points in the square
keeping track of the onesj 51, . . . ,N(n) that remain forn
iterates (n@1) and computing the stretching factorl j

(n) of
these points inn iterates. Then,

^l&>F (
j 51

N~n!

l j
~n!

N~n!
G 1/n

5F( ~n!

N~n!
G 1/n

, ~8!

whereS(n)5( j 51
N(n)l j

(n) .
To illustrate the application of Eq.~7!, consider the one-

dimensional model of Fig. 1, where we consider the invari
set of points that never leave the interval@0,1#. For this
system, one can show that the natural measure of the in
ant set in@0,a# is a/(a1b), whereas the natural measure
@a1a,a1a1b# is b/(a1b). Therefore

^l&5a21
a

a1b
1b21

b

a1b
5

2

a1b
. ~9!
ed

r-

d

y

t

ri-

Upon each iterate, a fractiona1b falls outside the interval
@0,1# so that

exp~2n/t!5@12~a1b!#n5~a1b!n, ~10!

or

1

t
5 lnS 1

a1b D . ~11!

Therefore Eq.~7! yields

H top5 lnS 2

a1b D2 lnS 1

a1b D5 ln 2. ~12!

~This is the correct value because the number of interv
remaining in the square aftern iterates is 2n.!

III. NUMERICAL METHODS FOR ESTIMATING H top

The methods that we introduce are based on Eqs.~7! and
~8!. First of all, suppose that we sprinkle a very large num
N(0) of points in a region that encloses a nonattracting c
otic invariant set. We keep track of theN(n) points that do
not leave that region aftern iterates, and computêl& using
Eq. ~8!. Taking the logarithm on both sides of Eq.~8!, we get

ln~^l&!>
1

n
ln@S~n!#1

1

n
lnS 1

N~n! D . ~13!

Using Eqs.~4! and ~7!, we obtain

ln@S~n!#;nF ln~^l&!2
1

t G;nHtop, ~14!

which says that, if we plot the quantity ln@S(n)# versusn, the
topological entropy will be given by the asymptotic slope
this graph. We refer to this as method 1. We note that
method, when applied to an attractor~in which caset5`),
becomes similar to the method introduced by Newhouse@6#.
For the situations we consider in this paper~smooth, two-
dimensional maps that do not expand areas!, Newhouse
proves that the topological entropy is given by the expon
tial growth rate of the arc length of the forward iteration of
line segmentg. Newhouse uses this rigorous result as a ba
for numerical computations of topological entropy. To n
merically estimate the growth of the length ofg under suc-

FIG. 1. Piecewise linear one-dimensional model.
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cessive iterations, Newhouse and Pignataro@6# considerN
evenly spaced points ong and approximate the length of th
nth iterate ofg by averaging the stretching of a differenti
line segment at theseN points overn iterates. For the case o
an attractor, Newhouse’s method is therefore slightly diff
ent from our method 1 in that he averages stretching rate
a number of initial points on a line segment, whereas
average over points all across the region that contains
invariant set@12#. The similarity of our method 1 applied t
attractors (t5`) with Newhouse’s method and the fact th
his rigorous results apply generally~i.e., do not assume hy
perbolicity! lead us to believe that method 1 will work fo
nonhyperbolic systems, despite the fact that our reasonin
its derivation assumed hyperbolicity.

Another way to exploit Eq.~7! is to consider the distribu
tion of finite time Lyapunov exponents. Given an initial co
dition x that stays in the restraining region forn iterates, we
define the finite time Lyapunov exponent as

h~x,n!5
1

n
ln@l~n!~x!#, ~15!

wherel (n)(x) denotes the stretching factor for then times
iterated orbit starting atx. We then compute this quantity fo
all uniformly sprinkled initial conditions that stay in the re
straining region, and obtain the distributionP(h,n) of finite
time Lyapunov exponents. For largen, the distribution is
asymptotically of the form@13#

P~h,n!;~2pn!21/2exp@2nG~h!#, ~16!

where the minimum value of the functionG is zero and
occurs ath5h̄, whereh̄ is the asymptotic Lyapunov expo
nent. Note that asn is increased, the distributionP(h,n)
becomes more and more peaked abouth5h̄ and approaches
a delta function,d(h2h̄), asn→`.

In terms of this distribution, we can express the avera
stretching factor as

^l&5F E P~h,n!exp~nh!dhG1/n

;F E exp@n~h2G~h!#dh#1/n. ~17!

For largen, the dominant contribution to this integral wi
come fromh values near the pointh1, where

dG~h!

dh U
h1

51. ~18!

Therefore

ln~^l&!5
1

n
@nh12nG~h1!#5h12G~h1!. ~19!

Another way to compute the topological entropy is theref
to find the G function and determine the point where i
slope is one. Independently, one can determine the de
time t from a fit of the slope of a plot of the logarithm of th
remaining number of points versus number of iterates. W
-
of
e
he

in

e

e

ay

h

these ingredients, one can estimate the topological entr
using Eqs.~7!, ~18!, and~19!. We refer to this as method 2
Its numerical implementation will be discussed further.

Finally, we will compare the results for the topologic
entropy obtained by these methods with the method of K
vács and Te´l @8–10#, which we refer to as method 3. Thi
method consists of estimating the exponential growth, a
function ofn, of the number of connected intervals on a lin
across the restraining region such that points in these in
vals do not leave the restraining region forn iterates.†Chen
et al. @11# apply this method to chaotic attractors by notin
that the entropy for the forward and inverse mapping is
same. Thus they apply the same method for a chaotic att
tor ~under the inverse mapping! by enclosing it in a region
from which almost every initial condition eventually leave
under the inverse map.‡

IV. ESTIMATION OF THE REQUIRED SAMPLING SIZE
FOR THE DIFFERENT METHODS

The numerical methods that we described in the preced
section relied on sprinkling a large number of points in t
region that contains the chaotic saddle~methods 1 and 2!, or
a large number of points on a line segment that stretc
across this region~method 3!. We now wish to obtain an
estimate of how large this number of sampling points ne
to be, in order for these methods to yield reliable resu
Equivalently, given a number of points sprinkled, we want
find the number of iteratesn over which the scalings pre
dicted by Eqs.~14! and ~3! hold.

A. Methods 1 and 2

Consider again the distribution of finite time Lyapuno
exponents, Eq.~16!. According to this equation, when sprin
kling a large number of points and computing stretching f
tors for those points that stay in the region forn iterates, the
logarithm of the per-iterate stretching will be distribute
around h̄. Moreover, the distribution will be peaked mor
and more around this value asn increases. For the computa
tion of ^l&, however, values ofh nearh1 ~the value ofh for
which the slope of theG function is one! will form the
dominant contribution, as explained below Eq.~17!. There-
fore we want to be sure that in the numerical method
have a significant number of points that will yieldh values
nearh1. The number ofh values that are close toh1 will be
proportional toP(h1 ,n), so if we denote byN(n) the num-
ber of the initially sprinkled points that stay in the region f
n iterates, we want

N~n!exp@2nG~h1!#@1, ~20!

or, usingN(0);N(n)exp(n/t) and Eqs.~7! and ~19!,

N~0!@exp@n~h12H top!#. ~21!

B. Method 3

For the method based on Eq.~3! @7#, we have to find all
the intervals on a line segment that stay forn iterates. When
we haveN(0) points on such a line segment, we can co
pare the spacing between the points@;1/N(0)# with the
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typical size of one of theB(n) intervals. Consider the me
dian interval size, which is the interval size such that 50%
all intervals are smaller than this value. Then, as we incre
the number of iterates, the median interval size eventu
becomes smaller than 1/N(0). Past this point, less than ha
of the connected intervals that stay forn iterates will be
found, and the found fraction decreases exponentially w
further increase. The numerical implementation of metho
based on Eq.~3! then fails past this point.

To estimate the median interval size, consider theP(h,n).
This is the probability density of finding a particular stretc
ing factor exp(hn). This probability is proportional to the
number of intervals with this stretching factor@and therefore
of length 'exp(2nh)# and the length of these interval
Therefore the fraction of all intervals with length exp(2nh),
which we denote byP̃(h,n), is proportional to

P̃~h,n!;P~h,n!exp~nh!;exp$2n@G~h!2h#%. ~22!

The maximum of this distribution will occur ath5h1 ~where
dG/dhuh1

51). For largen, we can expand the expone
in Eq. ~22! about h5h1 to obtain a GaussianP̃
;exp@2nG9(h1)(h2h1)

2# for h nearh1. Thus, forn large,h1
is approximately the medianh and therefore the approximat
median interval size becomes exp(2nh1). The criterion for
the required number of points for method 3 then becom
exp(2nh1)@1/N(0), or

N~0!@exp~nh1!. ~23!

Comparing Eq.~23! with Eq. ~21! shows that the number o
points required for method 3 is always larger than
method 1. This is another advantage of method 1.

C. One-dimensional map example

Consider again the one-dimensional map model of Fig
The number of intervals that stay forn iterates is 2n and
there are (n!)/ @m!(n2m)! # of lengthambn2m. The number
(n!)/ @m!(n2m)! # is the binomial coefficient. For fixed
largen the binomial coefficient is strongly peaked and sy
metric about (m/n)51/2, and the width of the peak inm/n
decreases to zero with increasingn as n21/2. The median
interval size is given byan/2bn/25(ab)n/2, and therefore we
have thath15 ln(ab)21/2.

According to Eq.~21!, we see that, for method 1, th
scaling breaks down for a lower number of iterates ifh1
differs substantially from the topological entropyH top.
Therefore to most easily test the scaling for the model s
tem of Fig. 1 we choosea and b so as to makeh12H top
substantial. We apply method 1 fora50.1 andb50.8 with
the initial number of points sprinkled equal to 63109,
63108, 63107, and 63106. With these values fora andb
h15 ln(ab)21/251.26 as compared toH top5 ln(2)50.693.
The resulting scalings are shown in Figs. 2~a!–2~d!. The
dashed line in each figure represents a line with slope
~the topological entropy!. Solving forn in Eq. ~21! to obtain
an upper bound for the scaling range, we obtain

n!
N~0!

h12H top
. ~24!
f
se
ly

h
3

s

r

.

-

s-

2

With the numbers used this gives as the upper limit for
scaling ranges of Figs. 2~a!–2~d!, respectively, 40, 35, 31
and 27. These numbers can be seen to agree with the ran
which the predicted scaling holds.

For method 3, we also check whether breakdown of
scaling occurs where predicted by Eq.~23!. With a50.4 and
b50.1, the criterion is N(0).(0.2)2n. There-
fore with N(0)5653106 we expect bad scaling fromn
;12 onwards. This number agrees with the onset of cur
ture in Fig. 3.

FIG. 2. Limitations to the predicted scaling for method 1. T
method is applied with the number of points sprinkled equal to~a!
63109, ~b! 63109, ~c! 63107, and ~d! 63106. The respective
upper boundaries for the scaling regime according to Eq.~21! are
approximately 40, 35, 31, and 27.
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D. More easily computable approximate criteria

Since the numerical determination ofh1 in principle in-
volves computation ofG(h) which is not straightforward,
we wish to express the criteria~21! and ~23! in terms of
quantities that are easier to compute. Therefore we ass
theG function to be approximately quadratic about its min
mum valueh5h̄, and we will need this approximation t
hold in h̄<h<h1,

G~h!>
~h2h̄!2

~2s2!
,

s5@2G9~ h̄!#21/2, ~25!

so thatP(h,n) is Gaussian,

P~h,n!;
1

A~2p!/ns
expS 2n

~h2h̄!2

2s2 D . ~26!

With this notation, Eq.~18! yields

h15h̄1s2. ~27!

Consider the schematic illustration of theG function in Fig.
4. The quadratic approximation yieldsh12G(h1)5h̄1(h1

2h̄)/25h̄1s2/2. Also, from Eqs.~7! and ~19! we have that
h12G(h1)5H top1(1/t). Therefore the criterion for metho
1 becomes

FIG. 3. Scaling of the number of connected intervalsNn that
stay for at leastn iterates as counted with a linear grid. The slope
fitted from n56 to n512.

FIG. 4. Relation betweenG function, h̄, h1, ands2 when theG
function is given by its lowest order approximation, Eq.~25!.
me

N~0!@exp~n/t!exp@n~H top11/t2h̄!#

5exp@n~H top2h̄12/t!#. ~28!

The criterion for method 3 becomes

N~0!@exp@n~2H top2h̄12/t!#. ~29!

The quantities appearing in Eqs.~28! and~29! are readily
available from the computations. The topological entropy
of course, already computed;h̄ is approximated by

^ lnl&5
1

n

(
j

lnl j
~n!

N~n!
, ~30!

and 1/t is available from the slope of lnN(n) versusn. The
quadratic approximation does not hold well for the map
Fig. 1 whenua2bu is substantial, as in our example in Se
IV C. We find, however, that it does hold well for our othe
examples in this paper~the Ikeda and He´non maps!.

In the rest of this paper, we have checked that all of o
estimations of the entropy are consistent with the limits
their scaling range.

V. NUMERICAL EXPERIMENTS

A. One-dimensional model system

To experimentally test the validity of these methods,
first wish to apply them to a system where we know t
topological entropy exactly, namely, the model system
Fig. 1. The topological entropy for this system is ln2.

Since we wish to compare the correctness and efficie
of the different methods, we do the following. For method
we randomly sprinkle 653106 points in the interval@0,1#
and compute the stretching factor of each of these po
until they leave. In this way, we obtainS(n) for n up to
approximately 30. One can see in Fig. 5 that the predic
exponential scaling, Eq.~14!, holds very well over this num-
ber of iterates. The slope is estimated with a least square
We then repeat this procedure 50 times~the randomly
sprinkled points are different each time! and find the average
and root mean square deviation. The results are summar
in Table I.

For method 2, we again use about 653106 points and
repeat the procedure 50 times. Results for the same qu
ties as for method 1 are listed in Table I. As can be seen
Fig. 6, the distribution of Lyapunov exponentsP(h,n) does

FIG. 5. ln@S(n)# versusn for the piecewise linear model o
Fig. 1.
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indeed become narrower asn is increased, whereas theG
function remains approximately unaltered, as predicted
order to find the point where the slope of theG function is
equal to one, we fit a cubic polynomial through the his
gram data with a least squares fitting method, in a ra
where the estimates of theG function for differentn agree
well with one another.

Finally, for method 3, we wish to obtain an estimation
the entropy for a similar computational effort as for the oth
methods. Therefore we lay down 653106 evenly spaced
points along the interval@0,1#, and obtain the lifetime of
each point~i.e., the time it takes to leave the interval@0,1#).
For eachn, we then go through this list and count the num
ber of intervals of consecutive points all having lifetim
larger thann. In this way, our estimation for the number o
connected intervals with lifetime at leastn is a lower bound,
and we expect to miss a lot of intervals with lifetimen when
a typical such interval is of the order of magnitude of t
grid size or less. This can be seen in Fig. 3, where we
that the scaling starts to be very bad from aroundn514
onwards. Therefore for this method we do a fitting of t
slopes forn<12, and for consistency choose the same s
ing range for method 1. Here also, the procedure is repe

FIG. 6. ~a! Distribution of the finite time Lyapunov exponen
for the one-dimensional model system forn512 andn525 and~b!
G functions obtained from these distributions.

TABLE I. Comparison of the estimated topological entropi
for the one-dimensional model system of Fig. 1 obtained using
three different methods. For each case, the average and root
square deviation of 50 independent attempts is listed. Note tha
correct value of the topological entropy is ln(2)50.693 147.

Average rms

Method 1 0.69315 0.00015
Method 2 0.68463 0.01500
Method 3 0.69313 0.00003
n

-
e

r

-

ee

l-
ed

50 times with the grid being shifted between different re
izations by a random fraction of the grid size. The avera
and rms deviation for method 3 are also shown in Table

From this table, we can conclude that both method 1 a
method 3 give very accurate results for the estimation of
topological entropies with small deviations from the exa
value for each estimation. Method 2 is in this respect sign
cantly less accurate, and the fluctuations between diffe
estimations are substantial. We remark that the root m
square deviation for method 3 is artificially small for th
model ~compared to the two-dimensional models that
will discuss further!. As a matter of fact, the 50 differen
estimations only gave rise to two possible outcomes, one
which is correct~up to six digits!, with the other one being
slightly below the correct value. In fact, method 3 necess
ily gives a lower bound for the topological entropy. Estim
tion with method 3 is, however, very dependent on the sc
ing range~fitting the slope withn<15 would change the
results greatly!, and this suggests that method 1 may be m
reliable in general.

B. Ikeda map

To perform a numerical test on a two-dimensional syste
we consider the Ikeda map@14# for the complex numberzn
5xn1 iyn wherexn andyn are real,

zn115a1bznexpS ik2
ih

11uznu2D , ~31!

with parameter valuesa51.0027, b50.9, k50.4, and
h56.0 @15#. These parameter values give rise to a chao
attractor. However, we can find an invariant subset of t
attractor that never leaves the rectangle@16#

0.1,x,1.1, 21.0,y,0.8.

This invariant set is shown in Fig. 7. We can again assoc
a lifetime with each point in this rectangle by counting ho
many iterates it takes to leave the rectangle. In this way
can associate a transient timet with this set. We then per-
form the same procedure as for the one-dimensional sys
estimating the topological entropy 50 times independen
and computing the average and rms deviation. The res
are summarized in Table II. For each estimation 1803106

points were used. The 50 line segments for method 3 w
obtained by connecting two randomly chosen points on
right and left boundary of the rectangle. From Table II, w
see that the results of methods 1 and 3 are consistent
each other, with method 2 slightly deviating. The fact th
method 1 has the smallest fluctuations, and that its predi
scaling holds over a very wide range leads us to believe
method 1 is the most reliable. Note also that the numer
value that it yields is consistently slightly above the value
method 3, which gives a lower bound. Further evidence
this conclusion comes from a separate estimation with
transition matrix method, described at the beginning of S
II. Labeling the five regions as shown in Fig. 7 by the nu
bers 1 to 5, and examining orbits that stay in these regi
we obtain the following 535 transition matrix:

e
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he



d
ha
u

t-

t
s
to-
rse
th-
our
ive

py.
50
h
are

in
c-
re-
re-
ig.
a-

he
st
in-
for
ble.

lity
a-
the
a
t

n-

the

ake
he
e
e-

f-
n

e
ct
ith
on

a

es

n
atr

es
e

tima-

6584 57JOERI JACOBS, EDWARD OTT, AND BRIAN R. HUNT
A5F 0 1 1 0 0

0 0 0 0 1

1 0 0 0 0

1 0 0 0 0

0 0 0 1 1

G . ~32!

The logarithm of the largest magnitude eigenvalue ofA is
0.413 807 6, which is consistent with the results of metho
and method 3.~Note, however, that there is no guarantee t
the partition shown in Fig. 7 is a generating partition. Th
the logarithm of this eigenvalue is not necessarilyH top
though it should, at least, be a good estimate for it.!

C. Hénon map

Finally, we illustrate how the three methods work for a
tractors. We consider the attractor of the He´non map,

~x,y!→~a2x21by,x!, ~33!

FIG. 7. ~a! Ikeda attractor and~b! invariant set that is formed by
points that never get mapped outside of the rectangle under forw
or inverse mapping.

TABLE II. Comparison of the estimated topological entropi
for the invariant set contained in the Ikeda attractor~Fig. 7!. Again,
the listed values are the average and root mean square deviatio
50 independent estimations. The eigenvalue of the transition m
for the partition in Fig. 7 is 0.413 807 6.

Average rms

Method 1 0.41405 0.00030
Method 2 0.40443 0.00200
Method 3 0.41381 0.00150
1
t

s

with the ‘‘classical’’ valuesa51.4,b50.3. We assume tha
Eq. ~7! still holds with t5`, and that therefore the method
we have discussed still yield a reliable estimation of the
pological entropy. For method 3 we must use the inve
mapping, since we are working with an attractor. For me
ods 1 and 2 we use the forward mapping. We compare
results with the estimation obtained from the very intens
computation of Grassberger, Kantz, and Moenig@5#, who
constructed a partition meant to give the topological entro
They conclude the topological entropy to be 0.46
60.0002. We use 93108 points for each estimation in eac
of the three methods. The random lines for method 3
selected by connecting random points on the linesx563
betweeny521.5 andy51.5. The results are summarized
Table III. Again, we see that method 1 has very small flu
tuations and that the scaling holds over a wide range. Mo
over, the quantitative result is consistent with the most p
cise previous value of Grassberger, Kantz, and Moen
Method 2 yields values that are consistent with this estim
tion as well, but the fluctuations are significantly larger. T
uncertainty with method 3 is particularly large for this te
case. We attribute this to the typical lifetime under the
verse mapping being very short. Thus we conclude that
this attractor case method 1 again seems to be most relia

VI. VARIATION OF THE TOPOLOGICAL ENTROPY
AS A FUNCTION OF ‘‘NOISE GAP’’ WIDTH

In this section we discuss examples indicating the uti
of topological entropy computations in a practical applic
tion. In particular, when trying to encode a message in
signal from a chaotic oscillator for the purpose of forming
communication signal@4#, one must avoid confusion abou
which partition element the orbit is in. For illustration, co
sider the chaotic attractor for the standard He´non map as an
encoding system. One can make a partition by dividing
attractor into two parts usingy50 as the dividing line. How-
ever, noise added to the signal upon transmission may m
it impossible to attach the correct symbol to points in t
boundary regiony.0. One way to counter this is to use th
small control~already employed to control the symbol s
quence that forms the signal! so that orbits never fall in the
‘‘noise gap’’ region 2e,y,e ~where e is chosen larger
than the noise level!. This technique was used in the proo
of-principle laboratory demonstration of communicatio
with chaos in Ref.@17#. Because the control is small, w
cannot expect it to create new orbits, topologically distin
from those already existing on the attractor. Therefore, w
imposition of our noise gap, we are concerned with points

rd

for
ix

TABLE III. Comparison of the estimated topological entropi
for the attractor of the He´non map. Again, the listed values are th
average and root mean square deviation for 50 independent es
tions. The previously estimated@5# value for the topological entropy
is 0.465060.0002.

Average rms

Method 1 0.46493 0.00003
Method 2 0.46621 0.00300
Method 3 0.44924 0.03000
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the original uncontrolled attractor whose orbits never v
the noise gap. This scenario is depicted in Fig. 8. In Fig. 8~a!
we show the attractor for the He´non map, Eq.~33!, with
parametersa51.4 andb50.3, and the noise gap, i.e., th
region 2e,y,e. The resulting invariant chaotic saddle
points that never maps into this noise gap is shown in F
8~b!.

Since points in the invariant set may be eliminated but
added with increasinge, the topological entropy is nonin
creasing withe. Thus there is an inherent trade-off betwe
information capacity (H top) and noise immunity. To asses
this tradeoff, a first step~which we consider here! is to evalu-
ateH top as a function of the noise gap size@18#.

We first investigate the dependence of the topological
tropy on this noise gap for a simple one-dimensional syst
x→2x mod 1. For symbolic encoding associated with a p
tition of @0,1# we write down a zero if an orbit lands to th
left of 0.5 and a one otherwise. The noise gap is set from
to 0.51e. We can then compute the topological entropy
the Cantor set of points that never fall in@0.5,0.51e# as
follows. Since the stretching factor is 2 for every orbit, t
topological entropy@H top5 ln(2)21/t# is determined if we
can compute the decay timet. ~Our method 1 reduces to thi
computation when the stretching is constant on each itera!
We therefore sprinkle a very large number of points in
interval @0,1# and compute how long it takes for each
these points to fall in the gap@0.5,0.51e#. From a fit of the
slope of the logarithm of the remaining points, ln@N(t)#, ver-
sus t, we can obtain 1/t. As can be seen from Fig. 9, th
resulting graph of the topological entropy versus noise
exhibits many intervals of constant entropy. Such intervals
constant entropy for saddle sets were also found in Ref.@11#
for the Hénon map as a function of the parametera for
a.1.6 and in@18# for noise gaps.

This phenomenon can be understood as follows. Cons
the binary expansion of points in the interval@0,1#. If x
5( is i(1/2)i , wheres i50 or 1, then we associate withx the
~infinite! symbol sequence,

s~x!5s1s2s3 . . . . ~34!

FIG. 8. ~a! Hénon attractor fora51.4 andb50.3 with noise gap
and ~b! resulting chaotic saddle made up of points on the attra
that never map into the noise gap.
t
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The mapM (x)52x mod 1 then has the property that

s@M ~x!#5s2s3s4 . . . , ~35!

i.e., applying the map to the binary representation of a
point is equivalent to removing the first digit and shifting th
remaining digits one place to the left. Now consider the
that we obtain by setting the gap from 1/2 to 1/211/8. Note
that s(1/2)51 and s(1/211/8)5101 ~by convention we
omit the infinite string of zeros that follow these number!.
Removing the interval@1/2,1/211/8@ means that all points
whose binary representation starts with 100 are not a pa
the invariant set. Removing all the points that eventua
map into@1/2,1/211/8@ means that all the points that hav
s is i 11s i 125100 for somei are not part of the invariant se
In particular, we remove all the points whose binary rep
sentation starts with 10100; that is, the interval@1/2
11/8,1/211/811/32@ . Therefore enlarging the noise ga
from @1/2,1/211/8# to @1/2,1/211/811/32@ will not alter
the invariant set since no new points are excluded thro
this enlargement of the gap: points that map into@1/2
11/8,1/211/811/32@ will be mapped into@1/2,1/211/8#
two iterates later, and therefore are excluded anyway. T
explains the plateau in Fig. 9 starting at 0.125. One can
that for similar reasons, moving the noise gap from 1/211/8
to the point with binary representation 1010101 . . . will re-
sult in the same set and will not affect the entropy. Theref
we expect the length of the largest constant entropy inte
to be

1/3211/12811/5121•••51/25(
i

1/22i51/24, ~36!

which is indeed the value that can be read from the gra
The other constant entropy intervals can be explained i
similar way. As a matter of fact, the graph represents a co
plete devil’s staircase, i.e., it is a continuous, monotonica
decreasing function that is constant almost everywhere
particular, the set of points that are not included in an int
val of constant entropy form a Cantor set of zero Lebes
measure.

We now investigate how we can use the concept of fra
dimension to characterize the Cantor set ofe values that are
not included in a constant entropy interval. Call this setA.
We now consider the dimension of the intersection ofA with
an interval@0.51e,0.51e1d#. For fixede consider the set

r

FIG. 9. Topological entropy versus noise gap f
x→2x mod 1.
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of points whose orbits under the 2x mod 1 map never land in
@0.5,0.51e@ . Call this Cantor setBe . One can show@2# that
the dimension of this set is

d̄~Be!5
ln~2!21/t

ln~2!
5

H top

ln~2!
, ~37!

whereH top5 ln(2)21/t. @Information dimension of the natu
ral measure and capacity dimension are equal for this
since the stretching rate, ln(2), is constant over the set. S
larly, the metric and topological entropies are equal.# Now,
consider the noise gap@0.5,0.51e1d@ where d increases
continuously from 0. The entropy can decrease only for v
ues of d such that 0.51e1d is one of the points in the
Cantor setBe . Therefore we conjecture that the local dime
sion of the Cantor setA near a value of the noise gape @with
entropy H top(e)# is the dimension of the Cantor setBe ,
namely,H top/ ln(2). In particular, if we letd(H top) denote the
local dimension ofA at the value ofe with H top(e)5H top,
thend(H top)5d̄(Be), or

d~H top!5
H top

h̄
, ~38!

whereh̄5 ln(2) is the Lyapunov exponent of the Cantor s
Be .

To test the relation, Eq.~38!, numerically, we do the fol-
lowing. Take a noise gap widthe such thate is on the Cantor
setA and compute the Ho¨lder exponent of the entropy func
tion (H top versuse) at that value. This involves computin
the entropy fore6d for small and varyingd. The Hölder
exponent is then given by the slope of the graph
ln@Htop(e2d)2H top(e1d)# versus ln(d). The resulting
graph fore50.125 is shown in Fig. 10 and an exponent
0.7 is measured in this way. This is in good agreement w
a value ofH top/ ln(2)50.4814/0.693150.6946. The associa
tion of the Hölder exponent with the local dimension ofA is
made as follows. Consider the interval@e2a,e1a# for some
small fixed a. Now divide this region intoN intervals of
equald. Let xi ( i 50, . . . ,N) be the points on the interva
boundaries; then

FIG. 10. Measurement of the Ho¨lder exponent of the function
H top(e) at e50.166 67. The solid line represents a line of slo
H top(0.166 67)/ln(2)50.6936~the prediction for the Ho¨lder expo-
nent!.
et
i-

l-

-

t

f

f
h

H top~e2a!2H top~e1a!5 (
i 50

N21

@H top~xi !2H top~xi 11!#.

~39!

The terms on the right-hand side will be zero for all t
constant entropy intervals, and if we assume the Ho¨lder ex-
ponent at points inA to be nearly constant across@e2a,e
1a#, then the intervals for which the entropy is not consta
contribute approximatelyda (a being the Ho¨lder exponent!.
If we denote byN(d) the number of nonconstant entropyd
width intervals, we then have that

N~d!da;H top~e1a!2H top~e2a!. ~40!

Since the right-hand side is independent ofd, we have
N(d);d2a implying that the local dimension ofA is the
Hölder exponenta.

As can be seen from Fig. 9, the intervals become sma
ase approaches zero, and the graph approaches a linear f
tion. This is because the local dimension of the Cantor se
points that are not contained in a constant entropy inte
goes to 1 ase goes to zero. The scaling of the entropy vers
e for small e goes as@19#

H top~e!> ln~2!2e. ~41!

This follows from Eq.~7! and the fact that the natural mea
sure of thee50 attractor that is contained in@1/2,1/21e@ is
e. Assuming that the attractor measure is only slightly
tered by a smalle gap, we estimate that exp(1/t)>12e, and
thus

1/t>e. ~42!

One can see from Fig. 11 that the tangent to the entr
versuse graph ate50 ~the dashed line! has a slope of21 as
expected.

Similar structure of the graph of the topological entro
versus the noise gap is observed for other one-dimensi
maps. As further examples, Fig. 12 shows such graphs
the tent map,

x→H 2x for x in @0,0.5#

222x for x in @0.5,1#,
~43!

FIG. 11. The topological entropy forx→2x mod 1 for smalle.
The dashed line represents ln(2)2e, which approximatesH top(e)
for small e.
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and for the logistic mapx→4x(12x). For smalle, the en-
tropy scales as ln(2)2e for the tent map, and ln(2)2(2/p)e
for the logistic map, for the same reason as explained ab
Numerical estimations of the slope of the entropy ver
noise gap graph neare50 confirm these predictions.

In two dimensions, we use method 1 to obtainH top as a
function ofe for the Hénon map~with a51.4 andb50.3) as
illustrated in Fig. 8. The resulting graph is shown in F
13~a!. Although the function looks rather smooth fore up to
0.25, we recognize the same structure as for the o
dimensional case. From the enlargement in Fig. 13~b!, it can

FIG. 12. ~a! Topological entropy versus noise gap for the te
map, and~b! topological entropy versus noise gap for the logis
map.

FIG. 13. ~a! Topological entropy versus noise gap for the He´non
map (a51.4, b50.3). ~b! An enlargement of the same functio
shows the constant entropy plateaus more clearly.
e.
s

.

e-

be seen that the constant entropy plateaus are present, an
believe this graph to be a complete devil’s staircase as w
The numerics are not accurate enough to make a nume
estimation of the local dimension of the set of points that
not included in a constant entropy interval. We can, ho
ever, give a simple theoretical treatment of this question.
do this, consider the schematic illustration at noise gape in
Fig. 14. The black dots at the intersections of the stable
unstable manifolds schematically represent the cha
saddle. Again, call this saddleBe and the Cantor set ofe
values not included in a constant entropy intervalA. This
time, when we increasee, the chaotic saddle will get smalle
each timee is such that the gap widens to include one of t
chaotic saddle points. Referring to Fig. 14, we see that
will occur when the corner point on the chaotic saddlex* is
included in the gap. In addition, as the gap increases thro
x* , all the points of the saddle that lie on the stable manif
segment throughx* will also be removed from the chaoti
saddle.~For a related consideration see@19#.! Therefore we
can effectively consider the process as successive remov
stable manifold line segments ase increases. Consequently
if we let d(H top) denote the local dimension ofA at H top(e),
thend(H top)5d̄s(Be)21, whered̄s(Be) is the dimension of
the stable manifold of the chaotic saddleBe . The informa-
tion dimension of the stable manifold is given by@2# 2
21/(th̄), whereh̄ is the positive Lyapunov exponent of th
chaotic saddle. For the He´non attractor, numerical computa
tions of the capacity dimension and the information dime
sion give values that are very nearly the same~the capacity
dimension is slightly higher!, and the situation is similar with
respect to the metric entropy~given by h̄21/t) and the to-
pological entropy ~with the topological entropy slightly
higher!. In such situations, a rough estimate is provided
approximately equating the capacity and information dim
sions, and the topological and the metric entropies. T
givesd(H top)>12(h̄t)21, and thus

d~H top!>
H top

h̄
. ~44!

This coincides with our previous result@Eq. ~38!# for the tent
map and the 2x mod 1 map~with the important difference

t

FIG. 14. Schematic illustration of the chaotic saddle that c
sists of all points on the chaotic attractor that, under the forward
backward mapping, will never map into the noise gap. The cha
set shown as black dots is the intersection of its stable and uns
manifold.
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that for the tent and the 2x mod 1 maps we expect exac
rather than approximate, equality due to the uniform stret
ing by the constant factor 2 in those cases!.

VII. CONCLUSION

We have discussed methods to numerically compute
topological entropy for chaotic saddles of two-dimensio
maps. The methods indirectly rely on computing a transi
time and stretching properties of the map. These are qua
ties which are much easier to compute than the quant
that occur explicitly in the definition of the topological en
tropy. Numerical experiments for cases where the entrop
known from independent sources indicate that the meth
provide the correct answer. One of the methods~method 1!
seems to be particularly efficient. For method 1, in the ca
we tested, the fluctuations between different estimations
smaller than for both of the other two methods. In additio
s

.

-

ap
-

e
l
t
ti-
s

is
ds

s
re
,

we find that method 1 obeys its predicted scaling ove
wider range, and is not dependent on the lifetimet being
long or short.

We also used method 1 to study the dependence of
topological entropy on the noise gap, i.e., the region tha
forbidden for the dynamics to enhance noise immunity
communicating with chaos@4,17#. The structure of the en
tropy versus noise gap function is established to be a c
plete devil’s staircase. Numerical tests provide evidence
our prediction of the dimension of the Cantor set of poin
that are not included in a constant entropy interval.
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